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a b s t r a c t

A set of 34 crude oils was analysed by GC–MS (SIM mode) and a suite of 28 diagnostic ratios (DR)
calculated. They involved 18 ratios between biomarker molecules (hopanes, steranes, diasteranes and
triaromatic steroids) and 10 quotients between polycyclic aromatic hydrocarbons. Three unsupervised
pattern recognition techniques (i.e., principal components analysis, heatmap hierarchical cluster analysis
and Kohonen neural networks) were employed to evaluate the final dataset and, thus, ascertain whether
eywords:
rude oil
iomarkers
iagnostic ratios
OMs

the crude oils grouped as a function of their geographical origin. In addition, an objective variable selec-
tion procedure based on Procrustes Rotation was undertaken to select a reduced set of DR that comprised
for most of the information in the original data without loosing relevant information. A reduced set of
four DR (namely; TA21, D2/P2, D3/P3 and B(a)F/4-Mpy) demonstrated to be sufficient to characterize the
crude oils and the groups they formed.

© 2010 Elsevier B.V. All rights reserved.

eatmap
rocrustes Rotation

. Introduction

As industrialization progresses worldwide, more petroleum
esources are required. Since demand increases and prices raise and
hey depend partly on the origin of the oil, there is a need for reli-
ble analytical methodologies to screen whether a given oil batch
orresponds to the contract agreement. It follows that chemical
haracterization of raw crude oils is a hot ongoing topic because of
he strong efforts petrochemical companies undergone to exploit
urrent productive extraction fields to their utmost. Disappoint-
ngly, chemical characterization is quite complex because the crude
il extracted at different wells in a same production field may be dif-
erent. Even within a well the crude oil collected at different depths

ay be different because of the different mixture ratios than can
ccur within the source rocks [1].

The so-called petroleum biomarkers (or biological markers) are
articularly useful to objectively assess the provenance of an oil [2]
nd their analysis was recommended to derive important informa-

ion on the crude oils (oil fingerprinting), to differentiate oils, to
earch for the source of a spillage and to monitor the degradation
rocess and the weathering stage of an oil under a variety of condi-
ions [3]. Biomarkers are naturally occurring, ubiquitous and stable

∗ Corresponding author. Tel.: +34 981 167000; fax: +34 981 167065.
E-mail address: andrade@udc.es (J.M. Andrade).

021-9673/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2010.10.043
hydrocarbons that appear in crude oils and most petroleum prod-
ucts [2]. They derive from formerly living organisms whose organic
materials were preserved in oil source rocks that upon burial (heat
and pressure) generated crude oil over geologic time.

In this work hopanes, steranes, diasteranes and triaromatic
steroids were analysed and they will be introduced briefly. In gen-
eral, terpanes and steranes are branched cycloalkanes consisting
of multiple condensed five- or six-carbon rings [4]. Hopanes are
pentacyclic triterpanes which contain 27–35 carbon atoms. They
derive from bacterial (prokaryotic) membrane lipid precursors.
There, cyclization of squalene precursors give rise to hopanoids
as, for instance, bacteriohopanetetrol [5]. Most hopanes derive
from the most abundant one, C35 tetrahydroxybacteriohopane
[6]. Steranes, formally named perhydrocyclopentanophenanthrene
rings, are a class of 4-cyclic compounds derived from steroids or
sterols (which constitute half of the lipids in the lipid membranes
in all eukaryotic cells) via diagenetic and catagenetic degrada-
tion and saturation. The relative abundances of C27-, C28- and
C29-steranes in oils reflect the carbon number distribution of the
sterols in the organic matter in the source rocks [2]. Diasteranes
are rearranged steranes that have no biological precursors, and

are most likely formed during diagenesis and catagenesis. Triaro-
matic steroids can originate by aromatization and loss of a methyl
group from monoaromatic steroids which, in turn, derived exclu-
sively from sterols with a side-chain double bond during early
diagenesis [5].

dx.doi.org/10.1016/j.chroma.2010.10.043
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:andrade@udc.es
dx.doi.org/10.1016/j.chroma.2010.10.043
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Table 1
Resume of the crude oils employed in this study.

Origin Product

North Africa Libya Amna, Es Sharara, Sarir, Sirtica
Algeria Sahara Blend
Tunisia Ashtart

Middle East Azerbaijan Azeri Light
Iran Foroozan, Soroosh
Saudi Arabia Arabian Heavy
Syria Syria

Central Africa Nigeria Brass, Ea, Escravos
Ecuatorial Guinea Zafiro

North Sea North Sea Brent, Draugen, Ekofisk, Flotta,
Forties, Gullfaks, Norne,
Schiehallion, Statfjord

South America Argentina Cañadón Seco
Colombia Caño Limón, Vasconia
Ecuador Oriente
Venezuela Santa Barbara

South Africa Angola Girassol
280 R. Fernández-Varela et al. / J. Ch

Despite biomarkers can be used as such it was found more use-
ul to calculate ratios among them [2,7,8], which were termed
iagnostic ratios (DR). Besides, diagnostic ratios are unaffected
y short-term weathering processes as long as they are based on
ompounds with little or comparable susceptibility to weathering.
ome of them are known to relate to the thermal maturity of the
ource rocks that gave rise to a crude oil; the type of organic mat-
er that was present in the source rock (e.g., terrestrial vs. marine);
nd/or the degree of weathering that may have occurred in the
rude oil reservoir before oil extraction. Their specificity, diversity,
omplexity, and relative resistance to weathering make them use-
ul ‘markers’ in the characterization of spilled oils, candidate source
ils, and background contamination [9]. Understanding the mean-
ng of these ratios, and evaluating whether they can be of use to
haracterize different oil production areas is therefore a must for
etrochemical companies and researchers on environmental char-
cterization of spilled hydrocarbons [2,9–11].

The diagnostic ratios considered in this study were based upon
genetically’ significant (source-specific) variables that are known
o occur among crude oils from different geologic basins as well
s on several previous studies from different research groups
1,2,7–10,12–16].

In addition, the large amount of data generated in many envi-
onmental studies and/or petroleum quests require the use of
ultivariate chemometric tools to provide a unbiased, objective

nd defensible means to differentiate among qualitatively simi-
ar oils [9,10,17,18]. Chemometric approaches are also required to
xtract a reduced set of DRs which may suffice to still differentiate
mong the different types of oils.

In this paper 40 biomarkers and 16 polycyclic aromatic
ydrocarbons (PAHs) were analysed in 34 crude oils by gas chro-
atography with mass spectrometry detection (GC–MS), using the

IM mode. In total, 28 DRs were calculated and studied by unsu-
ervised pattern recognition techniques (principal components
nalysis, heatmap hierchical cluster analysis and Kohonen neu-
al networks) in order to assess whether they may differentiate
ifferent petroleum-producing geographical areas worldwide. Fur-
her, an objective variable selection technique based on Procrustes
otation was applied to extract a minimum set of relevant DRs
o differentiate among the different petroleum basins as much as
ossible. Procrustes Rotation was selected because of its ability to
elect analytical variables instead of abstract factors or combina-
ions of variables like other chemometric techniques do.

. Experimental

.1. Samples

Thirty-four crude oil samples representing different petroleum
earing basins throughout the world were collected from sev-
ral Spanish refineries (Table 1). Their specific gravities ranged
rom 19◦ to 48◦ API. Crude oil samples were water and sediment
xtracted following an ASTM guide [19], light-protected and stored
t 4 ◦C until analysis. The analytes were measured after dissolv-
ng 20–50 mg of each sample, weighted accurately in an analytical
alance, in 5 mL of dichloromethane (Super purity solvent, Merck).

.2. Gas chromatography–mass spectrometry

An HP 6890 instrument (Agilent Technologies, Palo Alto, CA,

SA) with a pulsed splitless injector, an HP 5973 mass spectrom-
try detector and an HP-5MS fused silica capillary column (J&W
cientific, Folsom, CA, USA) 60 m long (0.25 mm i.d., 0.25 �m film
hickness) were employed. Operating conditions were: starting
ven temperature, 40 ◦C, held isothermally for 1 min, and raised
Central America México Maya
Russia Russia Siberian Light, Tengiz, Ural

Light

to 300 ◦C at 6 ◦C/min and held isothermally for 30 min. Carrier gas:
Helium, 1 mL/min constant flow. Injector and transfer line tempera-
ture were 300 and 280 ◦C, respectively. Ionization energy: 70 eV, ion
source temperature, 230 ◦C. Injection was performed in the pulsed
splitless mode, injected sample: 1 �L. The m/z range for MS analy-
sis was 40–440. The SIM mode (selected ion monitoring) was used
throughout. In total, 20 hopanes, 13 steranes and diasteranes, 7
triaromatic steroids biomarkers and 16 PAHs were analysed (see
Table 2 for more details).

As mentioned in the introduction, different diagnostic ratios
(DRs) have been proposed in literature to differentiate crude oils
and the most common ones were selected to perform this work:
27Ts, 28ab, 25nor30ab, 29Ts, 30O, 30G, 29ab, 30d, 32abS, 27dia,
29aaS, 29bb, 27bbSTER, 28bbSTER, 29bbSTER, TA21, TA26, TA27,
D2/P2, D3/P3, D3/C3 and Retene/P4 [20]. Besides, common diagnos-
tic PAHs include dibenzothiophenes and phenanthrenes, although
some other possibilities exist [13,21,22]. Thus, ‘source-specific’
marker compounds, including alkylated PAH hydrocarbons within
homologous alkylation isomeric groups were identified as well and
their ratios calculated. ‘Source-specific’ here means that the DRs
may serve as unambiguous markers for some oils under study,
as many times they are subject to little interference from abso-
lute concentration fluctuation of individual compounds [15]. The
‘source-specific’ DRs considered here were 2-MP/1-MP and 4-
MD/1-MD [20], B(a)F/4-Mpy, B(b + c)F/4-Mpy, 2-Mpy/4-Mpy and
1-Mpy/4-Mpy [23].

Further, in order to calculate the DRs a previous internal quality
control evaluation was done, as it had been shown that biomarkers
may be affected by the analytical variability and sample hetero-
geneity [8,20]. All samples were analysed by triplicate and the
relative standard deviation (RSD) of each compound calculated.
Then, following [20] and [23], only DRs for which the RSDs of the
compounds involved were lower than 5% were employed. Accord-
ingly, a suite of 28 DR (18 quotients between the peak heights of
several biomarkers and 10 ratios between peak areas for several
PAHs) were calculated. Their full description is displayed in Table 3.

2.3. Chemometric techniques and software
Here unsupervised pattern recognition multivariate techniques
had to be used because the lack of more samples of known ori-
gin impeded us to get independent validation sets of samples that
might be used to fully validate supervised methods. Hence, three
unsupervised methods were selected. Two of them, principal com-
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Table 2
Description of the biomarker compounds analysed in this work.

Group Name Abbreviation m/z

Biomarkers
Hopanes 18�(H)-2,29,30-trisnorhopane 27Ts 191

17�(H)-22,29,30-trisnorhopane 27Tm 191
17�(H),21�(H)-28,30-bisnorhopane 28ab 191
17�(H),21�(H)-25-norhopane 25nor30ab 191
17�(H),21�(H)-30-norhopane 29ab 191
18�(H)-30-norneohopane 29Ts 191
15�-metil-17�(H)-27-norhopane (diahopane) 30d 191
17�(H),21�(H)-30-norhopane(normoretane) 29ba 191
18�(H)-oleanane 30O 191
17�(H),21�(H)-hopano 30ab 191
17�(H),21�(H)-hopane(moretane) 30ba 191
17�(H),21�(H), 22S-homohopane 31abS 191
17�(H),21�(H), 22R-homohopane 31abR 191
Gammacerane 30G 191
17�(H),21�(H), 22S-bishomohopane 32abS 191
17�(H),21�(H), 22R-bishomohopane 32abR 191
17�(H),21�(H), 22S-trishomohopane 33abS 191
17�(H),21�(H), 22R-trishomohopane 33abR 191
17�(H),21�(H), 22S-tetrakishomohopane 34abS 191
17�(H),21�(H), 22R-tetrakishomohopane 34abR 191

Steranes and diasteranes 13�(H),17�(H), 20S-cholestane (diasterane) 27dbS 217
13�(H),17�(H), 20R-cholestane (diasterane) 27dbR 217
24-metil-5�(H),14�(H),17�, 20R-cholestane 28aaR 217
24-etil-5�(H),14�(H),17�, 20S-cholestane 29aaS 217
24-etil-5�(H),14�(H),17�, 20S-cholestane 29bbS 217
24-etil-5�(H),14�(H),17�, 20R-cholestane 29aaR 217
5�(H),14�(H),17�(H), 20R-cholestane 27bbR 218
5�(H),14�(H),17�(H), 20S-cholestane 27bbS 218
24-metil-5�(H),14�(H),17�(H), 20R-cholestane 28bbR 218
24-metil-5�(H),14�(H),17�(H), 20S-cholestane 28bbS 218
24-etil-5�(H),14�(H),17�(H), 20R-cholestane 29bbR 218
24-etil-5�(H),14�(H),17�(H), 20S-cholestane 29bbS 218
24-etil-5�(H),14�(H),17�(H), 20R-cholestane 29bbR 218

Triaromatic steroid C20-triaromatic steroid hydrocarbon C20TA 231
C21-triaromatic steroid hydrocarbon C21TA 231
C26, 20S-triaromatic steroid hydrocarbon SC26TA 231
C26, 20R + C27, 20S-triaromatic steroid hydrocarbon RC26TA + SC27TA 231
C28, 20S-triaromatic steroid hydrocarbon SC28TA 231
C27, 20R-triaromatic steroid hydrocarbon RC27TA 231
C28, 20R-triaromatic steroid hydrocarbon RC28TA 231

PAHs C2-phenanthrene P2 206
C3-phenanthrene P3 220
C4-phenanthrene P4 234
1-Methylphenanthrene 1MP 192
2-Methylphenanthrene 2MP 192
Retene Retene 234
C2-dibenthiophene D2 212
C3-dibenzothiophene D3 226
1-Methyldibenzothiophene 1MD 198
4-Methyldibenzothiophene 4MD 198
C3-chrysene C3 270
Benzo(a)fluorene B(a)F 216
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Benzo(b + c)fluorene
1-Methylpyrene
2-Methylpyrene
4-Methylpyrene

onents analsis – PCA, and hierarchical cluster analysis – CA, are
arametric classical methods with proved abilities to unravel the
ain patterns within the datasets. The third one, Kohonen neu-

al networks or self-organizing maps – SOM, is a so-called natural
omputation technique as it uses rules based on how humans pro-
ess information rather than formal equations to get the model.
light differences in the groups yielded by these techniques are
xpected because their fundamentals are quite different. The rele-
ant point here is that as long as the major results are not different,

he final conclusions are supported by different methodologies and,
hus, became trustworthy and somehow ‘validated’. In this partic-
lar study, as PCA takes into account the relationships between the
ariables and discard noisy information (which becomes relegated
o the last PCs), it will be the ‘reference method’. On the contrary,
B(b + c)F 216
1-Mpy 216
2-Mpy 216
4-Mpy 216

hierarchical clustering may be affected either by the correlation
between the variables and/or the presence of noisy or unrelevant
information (which is not known a priori). This, in turns, justifies
the usage of a variable selection procedure.

PCA aims to reduce dimensionality of the problem in the DRs
domain. This allows studying correlations between the variables
and defining some new factors that comprise the most relevant
information. By definition, the first factors (PCs) explain more infor-
mation than the latter ones. Also of relevant importance is the

capability of PCA to show how the samples look like in the experi-
mental domain and, thus, insightful and very accurate conclusions
can be drawn regarding the samples (and the variables).

Hierarchical clustering looks for groups of samples (clusters) so
that the samples within them are similar and, at the same time, the
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Table 3
Details of the diagnostic ratios calculated using PAHs and biomarkers. Acronyms used for the biomarkers correspond to those in Ref. [23] whereas those for PAHs correspond
to Refs. [13,23].

Biomarkers – hopanes
27Ts [27Ts(191)]/([27Ts(191)] + [27Tm(191)]) * 100
28ab [28ab(191)]/([28ab(191)] + [30ab(191)]) * 100
25nor30ab [25nor30ab(191)]/([25nor30ab(191)] + [30ab(191)]) * 100
29Ts [29Ts(191)]/([29Ts(191)] + [30ab(191)]) * 100
30O◦ [30O(191)]/([30O(191)] + [30ab(191)]) * 100
30G [30G(191)]/([30G(191)] + [30ab(191)]) * 100
29ab [29ab(191)]/([29ab(191)] + [30ab(191)]) * 100
30d [30d(191)]/([30d(191)] + [30ab(191)]) * 100
32abS [32abS(191)]/([32abS(191)] + [32abR(191)]) * 100

Biomarkers – steranes and diasteranes
27dia ([27dbS(217)] + [27dbR(217)])/([27dbS(217)] + [27dbR(217)] + [27bbR(217)] + [27bbS(217)]) * 100
29aaS [29aaS(217)]/([29aaS(217)] + [29aaR(217)]) * 100
29bb ([29bbR(217)] + [29bbR(217)])/([29bbS(217)] + [29bbR(217)] + [29aaR(217)] + [29aaS(217)]) * 100
27bbSTER [27bb(S + R)(218)]/([27bb(S + R)(218)] + [28bb(S + R)(218)] + [29bb(S + R)(218)]) * 100
28bbSTER [28bb(S + R)(218)]/([27bb(S + R)(218)] + [28bb(S + R)(218)] + [29bb(S + R)(218)]) * 100
29bbSTER [29bb(S + R)(218)]/([27bb(S + R)(218)] + [28bb(S + R)(218)] + [29bb(S + R)(218)]) * 100

Biomarkers – triaromatic steroids
TA21 [C21TA(231)]/([C21TA(231)] + [RC28TA(231)]) * 100
TA26 [SC26TA(231)]/([SC26TA(231)] + [SC28TA(231)]) * 100
TA27 [RC27TA(231)]/([RC27TA(231)] + [RC28TA(231)]) * 100

PAHs
D2/P2 [C2-dibenzothiophenes/(C2-dibenzothiophenes + C2-phenanthrenes)] * 100
D3/P3 [C3-dibenzothiophenes/(C3-dibenzothiophenes + C3-phenanthrenes)] * 100
D3/C3 [C3-dibenzothiophenes/(C3-dibenzothiophenes + C3-chrysenes)] * 100
2-MP/1-MP [2-methylphenanthrene/(2-methylphenanthrene + 1-methylphenanthrene)] * 100
4-MD/1-MD [4-methyldibenzothiopene/(4-methyldibenzothiophene + 1-methyldibenzothiophene)] * 100
Retene/P4 [retene/(retene + C4-phenanthrenes)] * 100
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B(a)F/4-Mpy [benzo(a)fluorene/(benzo(a)fluoren
B(b + c)F/4-Mpy [benzo(b + c)fluorene/(benzo(b + c)fl
2-Mpy/4-Mpy [2-methylpyrene/(2-methylpyrene
1-Mpy/4-Mpy [1-methylpyrene/(1-methylpyrene

roups can be differentiated among them. Two parameters need to
e defined: a similarity criterion, by using a metric of the distance
etween the samples (there are many possibilities), and a clustering
ule to proceed with the formation of the groups (there are different
ossibilities also).

In this paper the so-called ‘heatmap’ hierarchical clustering was
pplied. This way of presenting the results is unusual in the environ-
ental field (despite it has proved valuable in other scientific fields,

ike in genetic studies) and was applied because it is highly useful
o interpret chemically why some groups of samples appeared. The
eatmap is a colour-coded two-dimensional mosaic formed by the

oint representation of two clusters, one is sample-oriented while
he other is variable-oriented. Thus, the heatmap describes all sim-
larities within the whole dataset (samples vs. diagnostic ratios).
ote that, as in any typical clustering, the two parameters (similar-

ty and clustering method) need to be selected for each of the two
endrograms. Despite any selection is mathematically correct some
rials must be performed to select those parameters that yield the

ost chemically interpretable groups. This is so because the dif-
erent distances and/or clustering methods may lead to different
roups of samples. As in the heatmap two dendrograms are devel-
ped, the trials are a bit more time-consuming than in common
lustering.

Each tile of the mosaic is coloured with a different intensity
ccording to the values of the (pre-processed) data. Hence, the
eatmap literally adds another dimension of information presented
y the dendrograms, which may facilitate its interpretation [24].

Artificial neural networks based on the Kohonen approach
Kohonen Maps or SOMs) are self-organising systems capable of
olving unsupervised problems. In SOMs similar input objects are

inked to the topologically closest neurons in the network, i.e., neu-
ons that are located close to each other have similar reactions to
imilar inputs, while the neurons that are far apart have different
eactions to similar inputs. The SOM map is characterized usually
y being a squared toroidal space that consists of a grid of neurons
methylpyrene)] * 100
e + 4-methylpyrene)] * 100

ethylpyrene)] * 100
ethylpyrene)] * 100

(the ‘topology’). Each neuron contains as many elements (weights)
as the number of input variables. The weights of each neuron are
randomly initialised between 0 and 1 and updated on the basis of
the input vectors (i.e., samples for a certain number of times (called
training epochs). Both the number of neurons and epochs to be used
to train the map must be defined by the user; more technical details
can be found elsewhere (e.g., [25,26]).

Objective variable selection can be performed in different ways
although the Procrustes Rotation (PR) technique was employed
here. Its conceptual ideas and general applications were discussed
elsewhere [27,28] and they will not be included here. The first step
for variable selection is to determine the optimum number of fac-
tors (principal components, PCs) that possess relevant information,
rather than noise. A straightforward way to do so is to evaluate
the amount of information lost when the variables are successively
extracted for a given number of principal components. Irrelevant
factors will be characterized by a stabilization on the loss of infor-
mation regardless of the variable been deleted and a low value in
the overall variance they explain [29,30]. Then, the variable selec-
tion proceeds by deleting each variable in turn and evaluating the
information lost in each case [27,28].

The chemometric multivariate studies were performed using
built-in and in-house routines for Matlab® (the Mathworks Inc.,
MA, USA) and GenEx® (MultiD Analysis, Göteborg, Sweden).

3. Results and discussion

3.1. GC–MS results and univariate studies

Fig. 1 depicts the general appearance of the fragmentograms of

the m/z 191, 217, 218 and 231 ion profiles where from the DRs were
calculated for the crude oils.

A traditional univariate study for the experimental values of the
28 DRs calculated for all products and a classical representation
of their distribution [20] showed only that some ratios presented
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Fig. 1. Representative GC–MS fragmentograms of the studied biomarkers for the crude oils: (a) hopanes (m/z 191), (b) steranes (m/z 217) and diasteranes (m/z 218), and (c)
triaromatic steroids (m/z 231).
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Fig. 2. Ternary plot of C27, C28 and C29

arge variability and some clustering, which suggested that they
ay be of help to differentiate some crude oils (e.g., 27Ts, 27dia,
2/P2 and D3/P3). On the contrary, most DRs seemed not suitable

or differentiation purposes, like 30G, 30d and 32abS.
To extract more information from the raw data, ternary dia-

rams were proposed some time ago to represent the C27, C28 and
29 steranes [2,31–33]. Here the ternary diagram revealed some
ifferences among the samples (Fig. 2) and it differentiated quite
ell some (but not all) North African and South American oils.
nfortunately, the groups were not perfect.

The Nigerian crude oils (Brass, Ea and Escravos) had similar ster-
ne distributions, which suggested a same origin for the parent
rganic matter. Noteworthy, other North African crude oils (Amna,
shtart and Sirtica) situated far from them. Southern and Central
merican oils (Colombia, Ecuador and Venezuela) became clus-

ered at the left upper part of the graph, characterized by highest
alues of C27 and lowest of C29; Argentina and México oils were not
ncluded here.

Crude oils from the North Sea formed a quite homogenous group
although it included some other oils), with medium values for the
hree variables. The Middle East samples grouped very well but for
zeri Light, which situated at the top of the graph and they were
haracterized by highest values of C27 and lowest of C28.

A final conclusion of the univariate studies was that no vari-
ble (not even classical subsets, as the ternary diagrams) could
ifferentiate among the major oil production areas worldwide and,
herefore, a multivariate approach seemed in order.

.2. Principal components analysis

A principal components analysis (PCA) was made on the mean
entred data. The first three PCs explained 89.1% of the total vari-
nce and they sufficed to describe the system. Fig. 3 revealed five

roups of crude oils considering the sample scores. One appeared
eographically linked to North Africa, and it was formed by the
s Sharara, Sahara Blend and Sarir crude oils. The Amna (Lybia)
nd Ashtart (Tunissia) oils were close to this group on the PC3
irection; despite they did not so in the PC1 and PC2 directions
d abundance for the crude oils dataset.

(graph not shown) and, so, it was decided not to include them in
Group 1.

Group 2 was composed of almost all Middle East oils (Arabian
Heavy, Foroozan, Syria and Soroosh) despite other heavy oils got
also here; namely, Tengiz (Russia), Cañadón Seco (Argentina) and
Maya (México). Group 3 was formed by crude oils from differ-
ent origins: Central and South America, Middle East, and North
Africa. They were Caño Limón (Colombia), Vasconia (Colombia),
Oriente (Ecuador), Santa Barbara (Venezuela), Sirtica (Lybia), Giras-
sol (Angola), Ural Light (Russia), Siberia Light (Russia) and Azeri
Light (Azerbaijan). Group 4 was constituted by Central Africa oils:
Brass, Ea, Escravos (all from Nigeria) and Zafiro (Equatorial Guinea).
Group 5 grouped the Brent, Draugen, Ekofisk, Flotta, Forties, Gull-
faks, Norne, Schiehallion and Statfjord oils, all from the North Sea.

The profile of the loadings for PC1 (50.8% of the overall variance)
is dominated by D2/P2, D3/P3 and D3/C3 (positive loadings) and
27Ts, B(a)F/4-Mpy and B(b + c)F/4-Mpy (negative loadings). PC1 dif-
ferentiated mostly Group 2 (Middle East oils) from other crude oils
as they had maximum values for the ratios with positive loadings.
For instance, 75, 79 and 97, for D2/P2, D3/P3 and D3/C3, for Arabian
Heavy, vs. 16, 18 and 66 (respectively) for Central Africa crude oils
(e.g., brass, in the opposite side of PC1).

PC2 (23.4% explained variance) was mainly defined by 28ab,
30O, TA26 and B(a)F/4-Mpy (positive loadings); and 27Ts and TA21
(negative loadings). PC2 opposes Group 1 (constituted by crude
oils from North Africa: Es Sharara, Sahara Blend and Sarir; with
minimum values on the diagnostic ratios associated to positive
loadings and close-to-zero values for 28ab and 30O) to other oils,
specially to group 4 (Central Africa crude oils, with medium-high
values for 28ab, TA26 and B(a)F/4-Mpy and maximum values for
30O). Interestingly, the ratio 30O involving the oleanane molecule
is characteristic of Central Africa Nigerian crude oils [34].

The most relevant variables for PC3 (14.9% variance) were 27Ts,

25nor30ab, 27dia, TA21, B(a)F/4-Mpy and B(b + c)F/4-Mpy (positive
loadings) and 30O, 29ab, 29bbSTER, 2-MP/1-MP, 2-Mpy/4-Mpy and
1-Mpy/4-Mpy (negative loadings). PC3 was relevant to differenti-
ate samples from the North Sea, termed Group 5, as they showed
highest experimental ratios for the variables with highest positive
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Fig. 3. PCA scores scatterplots (mean centred da

oadings (e.g., 61, 9, 56, 67, 70 and 54 for 27Ts, 25nor30ab, 27dia,
A21, B(a)F/4-Mpy and B(b + c)F/4-Mpy, respectively, for Schiehal-
ion) opposed to Middle East crude oils, which presented lowest
alues for these variables (e.g., 33, 4, 16, 56, 22 and 7, respectively,
or Syria).

.3. Cluster analysis

The Manhattan distance and the Ward’s clustering algorithm
ere used to cluster the variables whereas the Euclidean squared
istance and Ward’s clustering algorithm were considered to group
he samples. Columnwise mean centred data (i.e., mean centring
cross the variables) was selected after some preliminary trials.

The heatmap yielded a combined dendrogram which differen-
iated clearly between four groups of samples (Fig. 4). They did not
gree exactly with those obtained by PCA. Cluster ‘A’ matched with
roup 2 from PCA, but for Cañadón Seco (Argentina). This group,
ormed by Middle East oils, is characterized by highest values on
everal DR calculated between PAHs, as D2/P2, D3/P3 and D3/C3.
luster ‘B’ agrees with group 1 of PCA, grouping North Africa crude
ils, which got defined by highest values on TA21 and at the same
ime lowest values on TA27.

Cluster ‘C’ showed two distinctive behaviours and, accordingly,
an be subdivided: subgroup C1 constituted by North Sea oils (cor-
esponding to group 5 of PCA) and subgroup C2 linked to the
riente, Santa Barbara, Siberian Light and Ural Light crude oils

which formed Group 3 in PCA—different origins). Subgroup C1 was
efined by high (but no maximum) values for 28ab, B(b + c)F/4-Mpy
nd B(a)F/4-Mpy. Subgroup C2 was characterized by intermediate
alues of D2/P2, D3/P3 and D3/C3.

Cluster ‘D’ included two groups. Subgroup D3 was constituted
y Nigerian crude oils (group 4 from PCA). They had highest values
n 30O (a ratio involving 30-oleanane, which is present only in
igerian crude oils). Subgroup D4 was linked to crude oils forming
roup 3 of PCA (Girassol, Sirtica, Caño Limón, Vasconia, Azeri Light)
lus the Amna (located close to group 1 from PCA), Cañadón Seco

group 2 from PCA), Ekofisk (group 5) and Zafiro (group 4) oils.
ubgroup D4 presented highest values on the TA26 ratio.

To sum up, groups A, B, C1 and D3 from hierarchical cluster-
ng had the same geographical interpretation as the corresponding
roups from the PCA above. Main difference with the PCA studies
0.2 0.4 0.6

nsidering all variables for the crude oils dataset.

was that samples that formed cluster D4 were located in different
PCA groups. Nevertheless, in all cases those samples were not at
the core of the PCA groups, but slightly apart (which pointed out
that they were not too similar to the core of the groups after all);
and this might be the reason why hierarchical clustering grouped
them in a separate cluster.

3.4. Kohonen neural networks

In this work, several topologies for the SOMs were studied, from
7 × 7 to 12 × 12 (in all cases columnwise mean centred data were
used). In addition, the number of neighbours varied from 6 to 7. The
learning ratio and the number of iterations were varied as well. The
final choice was a 7 × 7 map, 7 neighbours, a 0.3 learning ratio and
75 iterations.

Although the topology of the SOMs can be arranged in a cyclic
lattice, we found out best results using non-cyclic topologies and
these are presented here. Fig. 5 revealed that five distinct groups of
crude oils appeared, very similar to those from PCA. Group 1 coin-
cided with that from PCA. Group 2 at SOM was equal to group 2 from
PCA but for Cañadón Seco (which locate now at group 3). Group 3 at
SOM agreed with group 3 from PCA, although the Ashtart, Cañadón
Seco and Flotta became included here, and the Sirtica oil was not
considered. Group 4 from the SOM coincided with group 4 from
PCA and it is formed by the Nigerian crude oils and Zafiro (Equa-
torial Guinea). This group is, hence, consituted by Central Africa
oils. Group 5 was formed by North Sea oils, although the Amna and
Sirtica oils (Lybia) got clustered here as well.

3.5. Variable selection

Fig. 6a presents the complex situation obtained in this study to
select the optimum number of factors (PCs) to be used. Although
it was clear that after 9 PCs, the factors appeared much less rele-
vant than the first ones, a first minimum on the loss of information
was also noticed at 4 PCs as well. Hence, 4 and 9 PCs were con-

sidered as candidates to represent the dataset. In case the results
derived from them were similar, 4 PCs should be the choice due to
parsimony. According to the PR algorithms the minimum number
of variables to be retained coincides with the number of optimum
components that describe optimally the system. Hence a minimum
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ig. 4. Heatmap hierarchical clustering for the crude oils dataset using all the DRs. T
�, highest values) to white (�, lowest values).

et of four original DR were retained; namely TA21, D2/P2, D3/P3
nd B(a)F/4-Mpy. Fig. 6b and c demonstrates that they satisfactorily
econstructed the distribution of the samples on the PC1–PC2 sub-
pace. Results considering 9 PCs did not improved those with 4 PCs

nd, so, the latter were considered the final choice. It is worth noting
hat the four selected variables were highly relevant on the loadings
efining the first two PCs at the PCA above considering all variables.
n the contrary, 30O that was specific for Nigerian oils, was not

elected. Those oils appear characterized now by highest values on

Fig. 5. SOM map for the crude oils dataset e
erimental values of the DRs were coded with tiles whose shadow range from black

B(a)F/4-Mpy and (at the same time) lowest values on TA21 (see dis-
cussions below). Also interesting, the DRs selected seem reasonable
as the relative amounts of phenanthrenes and dibenzothiophenes
had previously been considered useful for source identification and

to assess the extent of oil weathering [13]. Particularly, D2/P2 and
D3/P3 remained reasonably constant as the Exxon Valdez cargo
degraded under the conditions of Prince William Sound [13].

Fig. 6c obtained from a PCA of the selected four variables
revealed five groups of crude oils, which agreed with those derived

mploying all the measured variables.
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rom the PCA above employing all the DRs. Group 1 (constituted
y crude oils from North Africa) presented maximum values for
A21, high values (but not maximum) for D2/P2 and D3/P3, and
ow values (but not minimum) for B(a)F/4-Mpy. Group 2 (Middle
ast crude oils) presented intermediate values for TA21, high val-

es (maxima in some cases) on D2/P2 and D3/P3, and medium-low
alues for B(a)F/4-Mpy. Group 4 (Central Africa crude oils) showed
ntermediate-low values for TA21, lowest values for D2/P2 and
3/P3, and highest ones for B(a)F/4-Mpy. Finally, group 5, formed
PC1

er of PCs to select the number of principal components and PCA scores scatterplots

by North Sea crude oils, had highest values on TA21, intermediate-
low values on D2/P2 and D3/P3, and intermediate-low values for
B(a)F/4-Mpy.

The heatmap presented in Fig. 7 revealed clusters with slight
differences regarding those considering all variables (Fig. 4). It was

obtained using the Manhattan distance and the Ward’s clustering
algorithm to cluster the variables, and the Euclidean squared dis-
tance and the Ward’s clustering algorithm to group the samples.
Columnwise mean centred data was selected after some prelim-
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hadow range from black (�, highest values) to white (�, lowest values).

nary trials. Note that in the following discussions the clusters
btained with the reduced set of variables have been denoted with
prime (′).
Cluster A′ matched with cluster A obtained using all variables,
ut for Ashtart (Tunissia) that was situated in a borderline position.
his group was characterized by highest values on D2/P2 and D3/P3.
luster B′ agrees with group B (considering all variables) although

Fig. 8. SOM map for the crude oils dataset con
cted variables. The experimental values of the DRs were coded with tiles whose

without the Amna crude oil (Lybia), nevertheless, this assignment
is acceptable because Lybia is located North Africa, as for the other
oils in group B′. This group got defined by highest values on TA21

and, at the same time, lowest values on B(a)F/4-Mpy.

Cluster C1′ coincided with subgroup C1 constituted by oils from
the North Sea (also corresponding to group 5 of PCA) except for
Caño Limón. This group was characterized by medium–high values

sidering only the four selected variables.
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n TA21 and B(a)F/4-Mpy and medium–low values on D2/P2 and
3/P3. Cluster C2’ matched subgroup C2, which was defined by
edium–high values on B(a)F/4-Mpy, D2/P2 and D3/P3.
Cluster D3′ agreed with subgroup D3 formed by Nigerian crude

ils (group 4 from PCA). Samples giving rise to subgroup D3′ had
ighest values on B(a)F/4-Mpy and lowest on TA21. Cluster D4′

atched with subgroup D4, but for Amna (located close to clus-
er A1′) and Caño Limón (subgroup C1′). Subgroup D4′ presented

edium values on B(a)F/4-Mpy and medium-high on D2/P2 and
3/P3.

Development of a Kohonen SOM using the 4 selected variables
ielded a similar distribution of the samples as the all-variables-
OM, but for a rotation in the 2D map, which is not relevant
compare Figs. 5 and 8). Groups labelled as ‘1’ were similar among
hem, but for Amna. Groups labelled as ‘2’ were almost equal, except
or Soroosh that was included at group ‘3’ when only the 4 selected
ariables were considered. Groups termed as ‘3’ became dissimilar
ecause the Brent, Sirtica, Soroosh and Zafiro oils became included
n group 3 derived from the selected variables, whereas the Azeri
ight, Caño Limón, Oriente, Ural Light and Vasconia ones were not
ithin it. The first two oils were included at group 5 (selected vari-

bles). The latter three oils were not included in any group. Groups
abelled as ‘4’ were almost similar but for the Zafiro oil. Groups ‘5’

ere similar but for the inclusion of the two oils mentioned above
Azeri Light and Caño Limón).

. Conclusions

The use of univariate tools to analyse the suite of 28 diagnostic
atios included in this study was not successful in differentiating
mong the major oil production areas worldwide. Only some fuzzy
rends could be appreciated in a classical ternary diagram. A PCA
eveloped on the overall data set revealed four main groups of sam-
les, linked to quite clear origins (North Sea, Nigeria, North Africa
nd Middle East), and another one without a clear geographical
ssignment. Similar groups were obtained by Kohonen neural net-
orks and hierarchical cluster analysis (although the latter showed

ome disagreements with the PCA, likely caused by the different
ature of the techniques and the fact that they do not consider the
orrelation between the variables).

An objective variable selection procedure based on Procrustes
otation was undertaken to select a reduced set of DRs that
omprised for most of the information in the original data with-
ut loosing relevant information. A reduced set of four DRs;
amely; TA21, D2/P2, D3/P3 and B(a)F/4-Mpy characterized the
rude oils and the groups they formed. The first ratio implied two
riaromatic steroid biomarkers, whereas the last three involved
atios between PAHs. It is worth noting that the last diag-
ostic ratio has been included recently in the new technical
eport for identification of oil spills suited by the CEN European
ommittee.
The sample groups obtained by PCA, hierarchical clustering and
rouping by Kohonen artificial neural networks were almost equal
o those observed using all variables. Besides, some of the DRs
bjectively selected here had been mentioned in the literature as
ighly relevant to differentiate crude oils from different origins,
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which pointed out the utility of the reduced set of ratios to foresee
the worldwide production area a crude oil came from.
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